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EXISTENCE OF THREE SOLUTIONS FOR HEMIVARIATIONAL
INEQUALITIES DRIVEN WITH IMPULSIVE EFFECTS

NEMAT NYAMORADI∗ AND KAIMIN TENG

Abstract. In this paper we prove the existence of at least three solutions to the following
second-order impulsive system:

−(ρ(x)u̇)′ +A(x)u ∈ λ(∂j(x, u(x)) + µ∂k(x, u(x))), a.e. t ∈ (0, T ),

∆(ρ(x)u̇i(xj)) = ρ(x+
j )u̇

i(x+
j )− ρ(x−

j )u̇
i(x−

j ) = Iij(u
i(xj)),

i = 1, . . . , N, j = 1, . . . , l,

α1u̇(0)− α2u(0) = 0, β1u̇(T ) + β2u(T ) = 0,

where A : [0, T ] → RN×N is a continuous map from the interval [0, T ] to the set of N -order
symmetric matrixes. The approach is fully based on a recent three critical points theorem of
Teng [K. Teng, Two nontrivial solutions for hemivariational inequalities driven by nonlocal
elliptic operators, Nonlinear Anal. (RWA) 14 (2013) 867-874].
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1. Introduction
The aim of this paper is to establish the existence of at least three solutions for the

following second-order impulsive system

(1.1)


−(ρ(x)u̇)′ +A(x)u ∈ λ(∂j(x, u(x)) + µ∂k(x, u(x))), a.e. t ∈ [0, T ],

∆(ρ(x)u̇i(xj)) = ρ(x+j )u̇
i(x+j )− ρ(x−j )u̇

i(x−j ) = Iij(u
i(xj)),

i = 1, . . . , N, j = 1, . . . , l,

α1u̇(0)− α2u(0) = 0, β1u̇(T ) + β2u(T ) = 0,

where A : [0, T ] → RN×N is a continuous map from the interval [0, T ] to the set of N -order
symmetric matrices, ρ ∈ L∞[0, T ] with ess inf [0,T ] ρ > 0, 0 < ρ(0), ρ(T ) < +∞, α1, α2, β1, β2
are positive constants, λ, µ ∈ R are two parameters, u(x) = (u1(x), . . . , uN (x)), xj , j =
1, . . . , l, are the instants where the impulses occur and 0 = x0 < x1 < x2 < · · · < xl <
xl+1 = T , Iij : R → R (i = 1, . . . , N, j = 1, . . . , l) are continuous and j, k : [0, T ] × RN → R
are a measurable function such that for all x ∈ [0, T ], j(x, ·), k(x, ·) are locally Lipschitz and
∂j(x, ·), ∂k(x, ·) denotes the generalized subdifferential in the sense of Clarke [1].
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In recent years, a great deal of work has been done in the study of the existence of solutions
for impulsive boundary value problems, by which a number of chemotherapy, population
dynamics, optimal control, ecology, industrial robotics and physics phenomena are described.
For the background, theory and applications of impulsive differential equations, we refer
interested readers to [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and
references therein. For example, in [16], Nieto and O�Regan studied the nonlinear Dirichlet
impulsive problem:

−u′′(t) + u(t) = f(t, u(t)), a.e. t ∈ [0, T ] \ {t1, . . . , tp},
∆u′(tj) = Ij(u(tj)), j = 1, . . . , p,(1.2)

u(0) = u(T ) = 0,(1.3)
where f ∈ C([0, T ]× R,R), Ij ∈ C(R,R) and j = 1, . . . , p. By the least action principle, the
existence of a solution was obtained by assuming sublinear growth on the nonlinearity and
impulses.

In [9] Zhang and Dai discussed the problem:
−u′′(t) + g(t)u(t) = f(t, u(t)), a.e. t ∈ [0, T ] \ {t1, . . . , tp},

with impulse conditions (1.2), and Dirichlet boundary condition (1.3), where f ∈ C([0, T ] ×
R,R), g ∈ L∞([0, T ],R). By using variational methods, the existence result of an infinite
number of solutions was obtained.

Tian and Ge in [20] studied the existence of multiple solutions for the following equation
with impulsive effect

−(p(t)u′)′ + q(t)u = f(t, u(t)), a.e. t ∈ [0, 1] \ {t1, . . . , tp},
∆(p(x)u′(tj)) = Ij(u(tj)), j = 1, . . . , p,

αu(0)− βu′(0) = 0, γu(1) + σu′(1) = 0.

By applying variational methods and upper and lower solutions methods, they obtained the
existence of at least four solutions and gave some accurate characteristics of the solutions.

The qualitative analysis of solutions of differential inclusion has been attracting a lot of
interest, because the differential inclusions are playing an increasingly important role in con-
trol systems, mechanical systems, economical systems, game theory, and biological systems,
see for instance [22, 23, 24, 25, 26, 27] and the references therein.

Inspired by the above articles, in this paper, by variational methods, we would like to
investigate the existence of solutions to problem (1.1).

The paper is organized as follows. In Section 2, we give preliminary facts and provide some
basic properties which are needed later. Section 3 is devoted to our results on existence of
three solutions.

2. Preliminaries
In this section, we present some preliminaries and lemmas that are useful to the proof

of the main results. For the convenience of the reader, we also present here the necessary
definitions.

We assume that A satisfies the following conditions:
(F1) A(x) = (dij(x)) is a symmetric continuous matrix with dij ∈ L∞([0, T ]) for every
x ∈ [0, T ].
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(F2) There exists a positive constant ζ such that A(x)u · u ≥ ζ|u|2 for every u ∈ RN and a.e.
in [0, T ].

We introduce some functional spaces. We use | · | to denote the Euclidean norm in RN and
H1

T the Sobolev space

H1
T := {u ∈ L2([0, T ];RN ) : u̇ ∈ L2([0, T ];RN )}

where u̇ is weak derivative of u, with the inner product

⟨u, v⟩ =
∫ T

0
(u(x), v(x))dx+

∫ T

0
(ρ(x)u̇(x), v̇(x))dx,

where (·, ·) denotes the inner product in RN . The corresponding norm is defined by

||u||H1
T
=

(∫ T

0
|u(x)|2dx+

∫ T

0
ρ(x)|u̇(x)|2dx

) 1
2

, u ∈ H1
T ,(2.1)

which is equivalent to the usual one. For every u, v ∈ H1
T , we also define

⟨u, v⟩1 =
∫ T

0
(A(x)u(x), v(x))dx+

∫ T

0
(ρ(x)u̇(x), v̇(x))dx,(2.2)

and observe that, by the assumptions (F1) and (F2), (2.2) defines an inner product in H1
T ,

whose corresponding norm is

||u|| = ⟨u, u⟩
1
2
1 .(2.3)

It is clear that H1
T is a reflexive Banach space. A simple computation shows that

(A(x)u, u) =
N∑

i,j=1

di,j(x)u
iuj ≤

N∑
i,j=1

||di,j ||∞|u|2,(2.4)

for every x ∈ [0, T ] and u ∈ RN , thus, putting together (A2) and (2.4), we have

√
m0||u||H1

T
≤ ||u|| ≤

√
M0||u||H1

T
,(2.5)

where m0 = min{1, ζ} and M0 = max{1,
∑N

i,j=1 ||ai,j ||∞}, that is the norm || · || is equivalent
to (2.1).

Lemma 2.1. For u ∈ H1
T , we have ||u||∞ ≤ γ0||u||H1

T
, where

γ0 =
√
2max

{
1√
T
,

√
T

(ess inf [0,T ] ρ)
1
2

}
.

Proof. For u ∈ H1
T , by this fact |u| ∈ R and mean-value theorem, one can get

|u(θ)| = 1

T

∫ T

0
|u(τ)|dτ,

for some θ ∈ [0, T ]. Thus, for x ∈ [0, T ], using Hölder’s inequality,
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|u(x)| =

∣∣∣∣u(θ) + ∫ x

θ
u̇(τ)dτ

∣∣∣∣
≤ |u(θ)|+

∫ x

θ
|u̇(τ)|dτ

≤ 1

T

∫ T

0
|u(τ)|dτ +

∫ T

0
|u̇(τ)|dτ

≤ T− 1
2

(∫ T

0
|u(τ)|2dτ

) 1
2

+ T
1
2

(∫ T

0
|u̇(τ)|2dτ

) 1
2

≤ T− 1
2

(∫ T

0
|u(τ)|2dτ

) 1
2

+
T

1
2

(ess inf [0,T ] ρ)
1
2

(∫ T

0
ρ(τ)|u̇(τ)|2dτ

) 1
2

≤
√
2max

{
T− 1

2 ,
T

1
2

(ess inf [0,T ] ρ)
1
2

}
||u||H1

T
,

which completes the proof. □
Now by using (2.5) and Lemma 2.1, there exist a positive constant k such that

||u||∞ ≤M1||u||,(2.6)

where M1 =
1√
m0
γ0.

Also, we present some preliminaries, basic notions and results of nonsmooth analysis,
namely, the calculus for locally Lipschitz functionals developed by Clarke [1], that are useful
to the proof to the main results.

Let (X, || · ||X) be a Banach space, (X∗, || · ||X∗) be its topological dual, and φ : X → R be
a functional. We recall that φ is locally Lipschitz if, for all u ∈ X, there exist a neighborhood
U of u and a real number LU > 0 such that

|φ(x)− φ(y)| ≤ LU ||x− y||X , ∀ x, y ∈ U.

If f is locally Lipschitz and u ∈ X, the generalized directional derivative of φ at u along the
direction v ∈ X is

φ◦(u;h) = lim sup
w→u,t↓0+

φ(w + th)− φ(w)

t
.

The generalized gradient of φ at u is the set

∂φ(u) = {u∗ ∈ X∗ : ⟨u∗, v⟩ ≤ φ◦(u; v) for all v ∈ X}.

So ∂φ : X → 2X
∗ is a multifunction. The function (u, v) 7→ φ◦(u; v) is upper semicontinuous

and

φ◦(u; v) = max{⟨ξ, v⟩ : ξ ∈ ∂φ(u)} for all v ∈ X.



EXISTENCE OF THREE SOLUTIONS FOR HEMIVARIATIONAL ... 29

We say that φ has compact gradient if �∂φ maps bounded subsets of X into relatively compact
subsets of X∗.

We say that u ∈ X is a critical point of locally Lipschitz functional φ if 0 ∈ ∂φ(u).
In the proof of our main results, we shall use nonsmooth critical point theory. For this, we

first present an important definition.

Definition 2.1. An operator A : X → X∗ is of type (S)+ if, for any sequence {un} in X,
un ⇀ u and lim supn→+∞⟨A(un), un − u⟩ ≤ 0 imply un → u.

Definition 2.2. A locally Lipschitz function φ : X → R satisfies the nonsmooth Palais-Smale
condition at level c ∈ R (nonsmooth (PS)c-condition for short) if any sequence {un}n≥1 ⊆ X
which satisfies
(2.1) J(un) → c;
(2.2) there exist {ϵn} ⊂ R, ϵn ↓ 0 such that J◦(un; v − un) + ϵn||v − un||X ≥ 0, for all v ∈ X
and all n ∈ N;
admits a strongly convergent subsequence.

If this is true for every c ∈ R, we say that J satisfies the non smooth (PS)-condition.

Lemma 2.2. ([[28], Proposition 1.1]). Let φ ∈ C1(X) be a functional. Then φ is locally
Lipschitz and

φ◦(u; v) = ⟨φ′(u), v⟩, ∀ u, v ∈ X,

∂φ(u) = {φ′(u)}, ∀ u ∈ X,

where φ′ is the Frechet derivative of φ.

Lemma 2.3. ([[29], Lemma 6]). Let φ : X → R be a locally Lipschitz functional with a
compact gradient. Then φ is sequentially weakly continuous.

We say that u ∈ X is a critical point of locally Lipschitz functional φ if 0 ∈ ∂φ(u).
In the proof of our main results, we shall use Theorem 2.1. For this, we first present an

important definition.

Definition 2.3. Let Φ : X → R be a locally Lipschitz functional and Ψ : X → R ∪ {+∞}
be a proper, convex, lower semi continuous functional whose restriction to the set dom(Ψ) =
{u ∈ X : Ψ(u) <∞} is continuous. Then, Φ+Ψ is a Motreanu-Panagiotopoulos functional.

Definition 2.4. Let Φ + Ψ be a Motreanu-Panagiotopoulos functional, u ∈ X. Then u is a
critical point of Φ+Ψ if for every v ∈ X, Φ0(u; v − u) + Ψ(v)−Ψ(u) ≥ 0.

The following lemma one basic properties of the generalized gradients:

Lemma 2.4. Let φ1, φ2 : X → R be a locally Lipschitz functionals. Then, for every u, v ∈ X,
the following conditions hold:
(6.1) ∂φ1(u) is convex and weakly∗ compact;
(6.2) the set-value mapping ∂φ1 : X → 2X

∗ is weakly∗ upper semicontinuous;
(6.3) φ◦

1(u; v) = maxu∗∈∂φ⟨u∗, v⟩ ≤ LU ||v||, with LU as in definition of locally Lipschitz
functionals;
(6.4) ∂(λφ1)(u) = λ∂φ1(u) for every λ ∈ R;
(6.5) ∂(φ1 + φ2)(u) ⊆ ∂φ1(u) + ∂φ2(u) for every λ ∈ R;
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The goal of this work is to establish some new criteria for system (1.1) to have at least
three weak solutions in X, by means of a very recent abstract critical points result of Teng
[30]. First, we recall the following result of ([30], Theorem 2.4), with easy manipulations, that
we are going to use in the sequel.
Theorem 2.1. Let X be a reflexive real Banach space, let Ψ be a convex, proper, lower
semicontinuous functional and Φ : X → R be a locally Lipschitz functional with compact
gradient ∂Φ and Φ is nonconstant. Suppose that
(A1) Θ : X → R is a locally Lipschitz functional with compact gradient ∂Θ;
(A2) there exists an interval Λ ⊂ R and a number η > 0, such that for every λ ∈ Λ and every
µ ∈ [−η, η] the functional Jλ,µ = Ψ+ λ(Φ + µΘ) is coercive in X;
(A3) The functional Jλ,µ satisfies the Palais-Smale condition for every λ ∈ Λ and every
µ ∈ [−η, η];
(A4) There exists r ∈ (infu∈X Φ(u), supu∈X Φ(u) such that the following two numbers

φ1(r) = inf
u∈Φ−1(Ir)

infv∈Φ−1(r)Ψ(v)−Ψ(u)

Φ(u)− r

and φ2(r) = sup
u∈Φ−1(Ir)

infv∈Φ−1(r)Ψ(v)−Ψ(u)

Φ(u)− r

satisfy φ1(r) < φ1(r), where Ir = (−∞, r) and Ir = (r,+∞).
If (φ1(r), φ1(r)) ∩ Λ ̸= ∅, then for every compact interval [a, b] ⊂ (φ1(r), φ1(r)) ∩ Λ, there

exists δ ∈ (0, η) such that if |µ| < δ, the functional Jλ,µ admits at least three critical points
for every λ ∈ [a, b].

The functional Jλ,µ : X → R corresponding to problem (1.1) is defined by

Jλ,µ(u) =
1

2
||u||2 −

m∑
j=1

N∑
i=1

∫ ui(xj)

0
Iij(s)ds+

α2ρ(0)

2α1
|u(0)|2

+
β2ρ(T )

2β1
|u(T )|2 − λ

[∫ T

0
j(x, u(x))dx+ µ

∫ T

0
k(x, u(x))dx

]
.(2.7)

In order to study problem (1.1), we will use the functionals Φ,Ψ : H1
T → R define by

Ψ(u) =
1

2
||u||2 −

m∑
j=1

N∑
i=1

∫ ui(xj)

0
Iij(s)ds+

α2ρ(0)

2α1
|u(0)|2 + β2ρ(T )

2β1
|u(T )|2(2.8)

= ϕ(u) + ψ(u),

Φ(u) = −
∫ T

0
j(x, u(x))dx, Θ(u) = −

∫ T

0
k(x, u(x))dx.(2.9)

Now, we will establish the variational principle for problem (1.1). For this purpose our
hypotheses on the nonsmooth potential F (x, u) and real continuous function Iij are the fol-
lowing:
(H1) For all u ∈ R, the function x→ j(x, u) is measurable;
(H2) For all x ∈ [0, T ], the function u→ j(x, u) is locally Lipschitz and j(x, 0) = 0;
(H3) There exist a, b ∈ L1([0, T ];R) and 1 ≤ r < 2 such that |u∗| ≤ a(x) + b(x)|u|r−1 for all
x ∈ [0, T ], x ∈ R and u∗ ∈ ∂j(x, u);
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(I1) There exist constants aij , bij > 0 and γij ∈ [0, 1), j = 1, 2, . . . ,m, i = 1, 2, . . . , N such
that |Iij(x)| ≤ aij + bij |x|γij for all x ∈ R, j = 1, 2, . . . ,m, i = 1, 2, . . . , N .

Definition 2.5. We say that u ∈ X is a weak solution to problem (1.1) if

∫ T

0
[(ρ(x)u̇(x), v̇(x)) + (A(x)u(x), v(x))− (λ(u∗(x) + µv∗(x)), v(x))]dx

+
α2ρ(0)

α1
(u(0), v(0)) +

β2ρ(T )

β1
(u(T ), v(T ))−

m∑
j=1

N∑
i=1

Iij(u
i(xj))v

i(xj) = 0,

for all u∗ ∈ ∂j(x, u(x)), v∗ ∈ ∂k(x, u(x)), v ∈ X, for a.e. x ∈ [0, T ].

Proposition 2.1. Assume that j(x, u) and k(x, u) satisfy the hypotheses (H1)-(H3), the
functional Jλ,µ : X → R is well defined and locally Lipschitz on X. Moreover, every critical
point u ∈ X of Jλ,µ is a solution of problem (1.1).

proof. The proof is similar to [[31], Lemmas 3.5 and 4.4] and is omitted. □
According to Proposition 2.1, we know that in order to find solutions of problem (1.1), it

suffices to obtain the critical points of the functional Jλ,µ.

3. Main result
In this section we present our main results. Now, we will apply Theorem 2.1 to obtain

some existence and multiplicity results for problem (1.1).
Before given the our main result, we need the following lemmas.

Lemma 3.1. Assume that A satisfy the hypotheses (F1)-(F2), j(x, u) and k(x, u) satisfy the
hypotheses (H1)-(H3) and Iij satisfies the hypotheses (I1), then the functional Jλ,µ : X → R
is coercive for every λ, µ ∈ R.

proof. By condition (I1), when ui(xj) < 0, we get

aiju
i(xj) +

bij(−1)γij

γij + 1
(ui(xj))

γij+1 ≤
∫ 0

ui(xj)
Iij(s)ds

≤ −aijui(xj)−
bij(−1)γij

γij + 1
(ui(xj))

γij+1,

when ui(xj) ≥ 0, we have

−aijui(xj)−
bij

γij + 1
(ui(xj))

γij+1 ≤
∫ ui(xj)

0
Iij(s)ds

≤ aiju
i(xj) +

bij
γij + 1

(ui(xj))
γij+1.

Thus,
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∣∣∣∣∣
∫ ui(xj)

0
Iij(s)ds

∣∣∣∣∣ ≤ aij |ui(xj)|+
bij

γij + 1
|ui(xj)|γij+1(3.1)

≤ aij |u(xj)|+
bij

γij + 1
|u(xj)|γij+1.

Therefore, by (2.6), one can get∣∣∣∣∣∣
m∑
j=1

N∑
i=1

∫ ui(xj)

0
Iij(s)ds

∣∣∣∣∣∣ ≤
m∑
j=1

N∑
i=1

(
aijM1||u||+

bij
γij + 1

M
γij+1
1 ||u||γij+1

)
.(3.2)

Also, by (H2), (H3) and the Lebourg’s mean value theorem, we have

|j(x, u)| = |j(x, u)− j(x, 0)| = |(u∗, u)| ≤ a(x)|u|+ b(x)|u|r

|k(x, u)| = |k(x, u)− k(x, 0)| = |(u∗, u)| ≤ a(x)|u|+ b(x)|u|r(3.3)
for all u ∈ RN and x ∈ [0, T ]. Thus, by (2.6) and (2.7), (3.2) and (3.3), one can get

Jλ,µ(u) =
1

2
||u||2 −

m∑
j=1

N∑
i=1

∫ ui(xj)

0
Iij(s)ds+

α2ρ(0)

2α1
|u(0)|2

+
β2ρ(T )

2β1
|u(T )|2 − λ

[∫ T

0
j(x, u(x))dx+ µ

∫ T

0
k(x, u(x))dx

]
≥ 1

2
||u||2 −

m∑
j=1

N∑
i=1

(
aijM1||u||+

bij
γij + 1

M
γij+1
1 ||u||γij+1

)

+
α2ρ(0)

2α1
|u(0)|2 + β2ρ(T )

2β1
|u(T )|2

−|λ|(1 + |µ|)
[
||u||∞

∫ T

0
a(x)dx+ ||u||r∞

∫ T

0
b(x)dx

]
≥ 1

2
||u||2 −

m∑
j=1

N∑
i=1

(
aijM1||u||+

bij
γij + 1

M
γij+1
1 ||u||γij+1

)

−|λ|(1 + |µ|)
[
M1||u||

∫ T

0
a(x)dx+M r

1 ||u||r
∫ T

0
b(x)dx

]
.

Since 1 ≤ r < 2, then Jλ,µ is coercive for every λ, µ ∈ R. □

Lemma 3.2. Assume that A satisfy the hypotheses (F1)-(F2), j(x, u) satisfies the hypotheses
(H1)-(H3). Then, the functional Φ : X → R is a locally Lipschitz functional with compact
gradient.

proof. Clearly, Φ is locally Lipschitz on H1
T . Now we shall show that the set-valued

function ∂Φ : H1
T → 2(H

1
T )∗ is compact. To this end, let us fix a bounded sequence {un =

(u1n, . . . , u
N
n )} ⊂ H1

T and u∗n ∈ ∂Φ(un) for all n ∈ N such that ⟨u∗n, v⟩ =
∫ T
0 (u∗n(x), v(x))dx for
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every v ∈ H1
T . Let L > 0 be a Lipschitz constant for Φ, restricted to a bounded set where

the sequence {un} lies, then ||u∗n||(H1
T )∗ ≤ L for all n ∈ N. Up to a subsequence, {u∗n} weakly

converges to some u∗ in (H1
T )

∗. We shall show that the convergence is strong. Assume to the
contrary, that is, we assume there exists ϵ > 0 such that ||u∗n − u∗||(H1

T )∗ > ϵ for all n ∈ N.
Hence for all n ∈ N, there exists vn ∈ BN (0, 1)(BN (0, 1) = {u = (u1, . . . , uN ) ∈ H1

T : ||u|| ≤
1}) such that

⟨u∗n − u∗, vn⟩ > ϵ.(3.4)

Since {vn} is bounded in H1
T , then up to a subsequence, there is a v ∈ H1

T such that vn ⇀ v
in H1

T and vn → v in C([0, T ]), vn → v in Lq[0, T ] (1 ≤ q ≤ 2). From (H3), one can get

⟨u∗n − u∗, vn⟩ = ⟨u∗n, vn − v⟩+ ⟨u∗n − u∗, v⟩+ ⟨u∗, v − vn⟩
≤ C1(||vn − v||L1 + ||vn − v||Lq) + ⟨u∗n − u∗, v⟩+ ⟨u∗, v − vn⟩ → 0,

as n→ +∞, which contradicts (3.4). □

Lemma 3.3. The functional Ψ : X → R is a sequentially weakly lower semicontinuous.

proof. Let {un} be a weakly convergent sequence to u in HT
1 , then ||u|| ≤ lim infn→∞ ||un||.

We have that {un} converges uniformly to u on C[0, T ]. Then we get

lim inf
n→∞

Ψ(un) = lim inf
n→∞

[1
2
||un||2 −

m∑
j=1

N∑
i=1

∫ ui
n(xj)

0
Iij(s)ds+

α2ρ(0)

2α1
|un(0)|2 +

β2ρ(T )

2β1
|un(T )|2

]

≥ 1

2
||u||2 −

m∑
j=1

N∑
i=1

∫ ui(xj)

0
Iij(s)ds+

α2ρ(0)

2α1
|u(0)|2 + β2ρ(T )

2β1
|u(T )|2

]
.

Hence, Ψ : X → R is a sequentially weakly lower semicontinuous. □
Therefore, we have the following remark.

Remark 3.1. By the Definition 2.3, the functional Jλ,µ is of a Motreanu-Panagiotopoulos
functional on X.

Lemma 3.4. Assume that A satisfy the hypotheses (F1)-(F2), j(x, u) and k(x, u) satisfy the
hypotheses (H1)-(H3) and Iij satisfies the hypotheses (I1). Then, the functional Jλ,µ satisfies
the (PS)-condition for every λ, µ ∈ R.

proof. Let {un} be a sequence in X such that Jλ,µ(un) is bounded and

J◦
λ,µ(un; v − un) + ϵn||v − un|| ≥ 0,

for every v ∈ X, where ϵn → 0+ as n→ ∞. For v = u, by Definition 2.2 and Lemma 2.4, we
get
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0 ≤ ϵn||u− un||+ J◦
λ,µ(un;u− un)

= ϵn||u− un||+ (Ψ + λ(Φ + µΘ))◦(un;u− un)

≤ ϵn||v − un||+ λ
[
Φ◦(un; v − un) + µΘ◦(un; v − un)

]
+Ψ◦(un;u− un).(3.5)

But, Ψ ∈ C1(X;R) and so

Ψ◦(un;u− un) = ⟨Ψ′(un), u− un⟩.
Thus,

ϵn||v − un||+ λ
[
Φ◦(un; v − un) + µΘ◦(un; v − un)

]
+ ⟨Ψ′(un), u− un⟩ ≥ 0.(3.6)

Since Jλ,µ is coercive on X (see Lemma 3.1), we get {un} is bounded in X and so by passing
to a subsequence if necessary, by the Sobolev embedding theorem, we may assume that

(3.7)
{
un ⇀ u, weakly in X,

un → u, a.e. in C([0, T ]).

Now, we choose R0 > 0 such that for every n ∈ N

||un − u|| < R0,

and sequences {v∗n}, {w∗
n} in X∗ such that, for every n ∈ N, v∗n ∈ ∂Φ(un), {w∗

n} ∈ ∂Θ(un)
and

Φ◦(un;u− un) = ⟨v∗n, u− un⟩, Θ◦(un;u− un) = ⟨w∗
n, u− un⟩

(see Lemma 2.4); by compactness of ∂Φ and ∂Θ, up to a subsequence, v∗n → v∗ ∈ X∗ and
w∗
n → w∗ ∈ X∗.
Fix ϵ > 0, from what was stated above, for n ∈ N big enough, one can get

||v∗n − v∗||X∗ <
ϵ

4|λ|R0
, ||w∗

n − w∗||X∗ <
ϵ

4|λ||µ|R0
,

ϵn <
ϵ

4R0
, ⟨λ(v∗ + µw∗), u− un⟩ <

ϵ

4
;

so, from (3.6) we easily get for n ∈ N big enough

⟨Ψ′(un), un − u⟩ < ϵ,

that is

lim sup
n→+∞

⟨Ψ′(un), un − u⟩ ≤ 0.

Since Ψ′ is of type (S)+ (The proof is similar to [31], Lemma 4.2 and is omitted.), therefore we
obtain un → u in X. Thus, the functional Jλ,µ satisfies the (PS)-condition for every λ, µ ∈ R.
□

Our first result is as follows.
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Theorem 3.1. Assume that A satisfy the hypotheses (F1)-(F2), j(x, u) and k(x, u) satisfy
conditions (H1)-(H3) and Iij satisfies conditions (I1), and suppose j(x, u), Iij satisfy the
following conditions:
(H4) There exists α > 2 such that lim sup|u|→0

max{|u∗|:u∗∈∂j(x,u)}
|u|α−1 < ∞ uniformly for all

x ∈ [0, T ];
(H5) There exist 0 < µ < r0 where r0 is a positive constant, c0 > 0 and M > 0 such that
c0 < j(x, u) ≤ −µj◦(x, u;−u) for all u ∈ RN with |u| ≥M and x ∈ [0, T ];
(I2) Iij (i = 1, . . . , N ; j = 1, . . . ,m) are odd and nonincreasing.

Then, the problem (1.1) has at least three solutions on X.

proof. Since Φ(0) = 0, we claim that Φ(tu) → −∞ as t → +∞. To this end, Let
N be the Lebesgue-null set outside which the hypotheses (H3) and (H5) hold and let x ∈
[0, T ]\N , u ∈ RN with |u| ≥ M . We set J (x, λ1) = j(x, λ1u), λ1 ∈ R. Clearly, J (x, ·)
is locally Lipschitz. By Rademarcher’s theorem, we see that for every x ∈ [0, T ], λ1 →
J (x, λ1) is differentiable a.e. on R and at a point of differentiability λ1 ∈ R, we have
d

dλ1
J (x, λ1) ∈ ∂J (x, λ1). Moreover, by Chain rule, we have ∂J (x, λ1) ⊂ (∂uj(x, λ1u), u)RN ,

hence λ∂J (x, λ1) ⊂ (∂uj(x, λ1u), λ1u)RN . From (H5), one can get

λ1
d

dλ1
J (x, λ1) ≥

1

µ
J (x, λ1) =⇒

d
dλ1

J (x, λ1)

J (x, λ1)
≥ 1

λ1µ
.

By Integrating from 1 to λ0 from above inequality, we get ln J (x,λ0)
J (x,1) ≥ lnλ

1
µ

0 . So, we have

proved that for x ∈ [0, T ]\N , |u| ≥M and λ1 ≥ 1, we have λ
− 1

µ

0 j(x, λ1u) ≥ λ
1
µ

0 j(x, u).
Let z(x) = min{j(x, u) : |u| = M}, clearly z ∈ L2([0, T ],R+) and z(x) ≥ c0 for every

x ∈ [0, T ]. Therefore, for every x ∈ [0, T ]\N and |u| ≥M , we have

j(x, u) = j(x, |u|M−1Mu|u|−1) ≥
( |u|
M

) 1
µ
j
(
x,

u

|u|
M

)
≥ z(x)

( |u|
M

) 1
µ
.(3.8)

On the other hand, by means of the equivalence between two norms in finite-dimensional
space, for any finite-dimensional subspace U ⊂ X and any u ∈ U , there exists a constant
C > 0 such that

||u||δ =
(∫ T

0
|u(x)|δdx

) 1
δ

≥ C||u||, δ ≥ 1.

Then, by (3.2) and (3.8), there exists a positive constant C1 such that

Φ(u) = −
∫ T

0
j(x, u(x))dx ≤ −

∫ T

0
z(x)

( |u(x)|
M

) 1
µ
dx

≤ −c0
( 1

M

) 1
µ ||u||

1
µ
1
µ

≤ −c0C
( 1

M

) 1
µ ||u||

1
µ

Since 0 < µ < r0, then for any u ∈ X\{0}, we have Φ(tu) → −∞ as t → +∞. Hence the
claim is true. Then, for large t0 > 0, we take u0 = t0u with u ∈ X\{0} fixed, then Φ(u0) < 0,
that is, u0 ∈ Φ−1(−∞, 0), hence that R−

0 ⊂ (inf Φ, supΦ) follows from the locally Lipschitz
continuity of Φ.
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If we denote

λ∗ = φ1(0) = inf
u∈Φ−1(I0)

−Ψ(u)

Φ(u)
, I0 = (−∞, 0).(3.9)

By the above argument, we see that λ∗ is well defined.
Similar to the proof of (4.5) in [32], one can get

lim sup
r→0−

φ1(r) ≤ φ1(0) = λ∗.(3.10)

On the other hand, since Iij (i = 1, . . . , N ; j = 1, . . . ,m) are odd and nonincreasing, one
has that the

∫ y
0 Iij(s)ds are even and

∫ y
0 Iij(s)ds ≤ 0 for any y ≥ 0; thus

N∑
i=1

∫ ui(xj)

0
Iij(s)ds ≤ 0.(3.11)

Also, from (H3) and (H4), we can deduce that |j(x, u)| ≤ C1|u|α, for every u ∈ R, where
C1 > 0 is a constant. So, for every u ∈ X, it is easy to deduce that |Φ(u)| ≤ C2||u||α, where
C2 > 0 is a constant. Therefore, given r < 0 and u ∈ Φ−1(r), by (3.11), we have

−r = −Φ(u) ≤ C2||u||α = C3

(
||u||2

2

)α
2

≤ C3(Ψ(u))
α
2 ,(3.12)

where C3 = 2
α
2C2. Since 0 ∈ Φ−1((r,+∞)), by definition on φ2(r) and (3.12), we have

φ2(r) ≥
1

|r|
inf

v∈Φ−1(r)
Ψ(v) ≥ C

− 2
α

3 |r|
2
α
−1.

In view of α > 2, so that the above inequalities imply that limr→0− φ2(r) = +∞. Conse-
quently, we have proved that

lim
r→0−

φ1(r) = φ1(0) = λ∗ < lim
r→0−

φ2(r) = +∞.

This yields that for all integers n ≥ n∗ = 2 + [λ∗] there exists a number rn < 0 so close to
zero such that φ1(rn) < λ∗+ 1

n < n < φ2(rn). Hence, since Λ = R, by Theorem 2.1, for every
compact interval

[a, b] ∈ (λ∗,∞) =
∞∪

n=n∗

[
λ∗ +

1

n
, n

]
⊂

∞∪
n=n∗

(φ1(rn), φ2(rn))
∩

Λ,

there exists δ > 0 such that problem (1.1) admits at least three solutions for every λ ∈ [a, b]
and µ ∈ (−δ, δ). Therefore, we finish the proof. □

Now, we introduce some notations.
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K1 =
T
(

ξ1
η1

+ ξ2
η2

)
+ α1

α2
ξ1 +

β1

β2
ξ2

T
(

1
η1

+ 1
η2

− 1
) ,

K2 = |ξ1|p
∫ T

η1

0
ρ(x)dx+ |K1|p

∫ T− T
η2

T
η1

ρ(x)dx+ |ξ2|p
∫ T

T− T
η2

ρ(x)dx,

K3 =

{( T
η1

+
α1

α2

)
|ξ1|,

α1

α2
|ξ1|,

( T
η2

+
β1
β2

)
|ξ2|,

β1
β2

|ξ2|
}
.

In the following result we replace condition (H5) by conditions (H6).

Theorem 3.2. Assume that there exist four positive constants ξ1, ξ2, η1 and η2 with η1η2 <
η1η2 and the hypotheses (F1)-(F2), (H1)-(H4) and (I1)-(I2) hold, suppose j(x, u) satisfies the
following condition:
(H6) there exists σ ∈ (0, r0) where r0 is a positive constant, such that lim|u|→+∞

j(x,u)
|u|σ = +∞

uniformly for all x ∈ [0, T ];

Then, the problem (1.1) has at least three solutions on X.

proof. From the proof of Theorem 3.1, we only need to prove that Φ−1(−∞, 0) ̸= ∅. To
this end, we prove that there exists u0 ∈ X such that Φ(u1) < 0. By (H6), for any constant
ϱ3 > 0, there exists δ3 > 0 such that

j(x, u) ≥ ϱ3|u|σ, for all |u| ≥ δ3, x ∈ [0, T ].

It follows from (H2), (H3) and the Lebourg’s mean value theorem that

j(x, u) ≥ ϱ3|u|σ − ϱ3δ
2
3 − a4(x), for all u ∈ RN , x ∈ [0, T ],(3.13)

where a4(x) ∈ L1([0, T ],R+). Set E = (1, 0, . . . , 0) ∈ RN , therefore, by (2.6), (3.13) and (H3),
choose u0(x) as follow

u0(x) =


ξ1
(
x+ α1

α2

)
E , 0 ≤ x < T

η1
,

ξ1
(
T
η1

+ α1
α2

)
E +K1

(
x− T

η1

)
E , T

η1
≤ x ≤ T − T

η2

ξ2
(
x− β1

β2
− T

)
E , T − T

η2
< x ≤ T.

Clearly, u0 ∈ H1
T . In view of

∫ T

0
ρ(x)|u̇0(x)|2dx = K2, 0 ≤

∫ T

0
|u0(x)|σdx ≤ TKσ

3 .

Thus, by Holder’s inequality, we have

Φ(su0) = −
∫ T

0
j(x, su0(x))dx ≤ −sσϱ3

∫ T

0
|u0(x)|σdx+ C4

≤ −ϱ3TKσ
3 s

σ + C4
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Here C4 is a positive constant. Then for large s0 > 0, we take u1 = s0u0, then Φ(u1) < 0.
Therefore, we complete the proof. □

Theorem 3.3. Assume that the hypotheses (F1)-(F2), (H1)-(H4) and (I1)-(I2) hold, suppose
j(x, u) satisfies the following condition:
(H7) There exists 1 < β < 2 such that lim inf |u|→∞

max{|u∗|:u∗∈∂j(x,u)}
|u|β−1 > 0 uniformly for all

x ∈ [0, T ].
Then, the problem (1.1) has at least three solutions on X.

proof. From the proof of Theorem 3.1, we only need to prove that Φ−1(−∞, 0) ̸= ∅. To
our purpose, form (H3) and (H7) we have j(x, u) ≥ C5|u|β−C6, where C5 and C6 are positive
constants. Thus, one can get

Φ(u) = −
∫ T

0
j(x, u(x))dx ≤ −C5

∫ T

0
|u(x)|βdx+ C6T = −C5||u||βLβ(0,T ;RN )

dx+ C6T.

So,

lim
u∈X,||u||

Lβ(0,T ;RN )
→∞

Φ(u) = −∞,

So that R−
0 ⊂ (inf Φ, supΦ) follows from the locally Lipschitz continuity of Φ. □
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